" Exercises
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You just can’t do that!
* Friction is not a conservative force!
* Us is not even a potential, it is a force multiplied by a velocity (power)

Specifically, Us it’s the (1D) Rayleigh dissipation function, which
gives the actual friction force Fs via the velocity gradient as:

Fg =—-V;Us;

Then, you can write down Newton equations of motion as:

mx +bx + kxr =0

But

U

S

In this way we have not specified a Lagrangian,
nor we have used the Eulero-Lagrange equations...
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Can we write down a Lagrangian containing a friction term?

Yes - by basically cheating, and modifying the way in which we
write the kinetic energy. For instance, the following Lagrangian:

1 b
L(x,t)= §e“t(mx°2 — k), pu=—
m

Gives exactly the same equations of motions as above

However...

The “correct” way to proceed when you have some non conservative force in your
system is:
» Write the Lagrangian as usual, omitting the terms originating from the non
conservative force
» Solve the modified Eluero-Lagrange equation:

d (0L _8_£_
dt \ 0x ox

| |
et
e

Where £ includes every non conservative force you have in your system.
Again, you end up with the same equations of motions, this time avoiding to modify the Lagrangian
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Electronic Structure Methods for Materials Modelling

A peek into the wondrous realm of the

Enhanced Sampling (Vol.1)

* Learning Outcomes

« Coarse graining the phase space: The concept of Collective Variable
* The basics of free energy-based enhanced sampling methods



Outline

* Why do we need enhanced sampling methods?

» Rare events
* Free energy vs path sampling methods

Thermodynamic integration
Order parameters (collective variables)

Blue Moon ensemble

Umbrella Sampling
Path sampling methods

Next: Enhanced sampling (Vol.2)
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Rare events |
And why they matter LC/\®:
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What is a rare event? LONDON CENTRE FOR

In molecular dynamics, a rare event is something that happens on a
timescale much longer than the one you can afford

Many many processes of interest fall into this class of problems

Protein folding
Crystal nucleation

Note that a process can be a rare event for ab initio MD (1023 particles, 1023 ps)
but not for classical MD (1056 particles, 105 ps).
For example, the structural relaxation of a supercooled liquid

What do you do when you want to simulate something that would never
(well, maybe several decades...) happen in your MD simulation?



Enhanced Sampling
Free energy based vs path sampling methods LG\ .
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Enhanced sampling methods:

The goal:
Simulate the rare event of interest disrupting as little as
possible the actual dynamics of the system

A typical scenario:

Natural fluctuations of the system

Free energy barrier

Free energy methods
f Path sampling

They try to reconstruct the methods

free energy surface

They meddle with the way in which the

Tell a lot about thermodynamics
system evolves in time

(kinetics it’s tricky)

A(N,V,T,s)

; Tell a lot about kinetics
(and thermodynamics as well)

Doable ab initio
(with some effort)

Still far beyond the reach of ab initio MD

S - same order parameter
(more on that later...)



The basic goal L
Obtaining Free Energies LC/\®:
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In principle, we know that (in e.g. NVT)...

P = (p(z)) = Q(N’lu ot / p(x) - e~ PH@ gy

For the (Helmoltz) free energy A=E-TS, though...

1
QN,V, T

A=(E-TS) = B /(E —T5) e PE@) gy

The problem with evaluating entropy...
« Does not depend on x (position, momenta) only!
« Cannot be evaluated by an ensemble average
 |tis related to the on the available volume of accessible phase space
(i.e. the partition function!)

S = kg In[Q(N,V, E),

In fact...

A(N,V,T) = —kgTIn[Q(N, V,T)]



Thermodynamic integration '
The idea LC f
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As it happens, experiments can’t get free energies directly as well.
They measure derivatives of free energies, such as:

9A\ dAJTN
(W>NT‘ or (m/T)VN‘E

Thus, we should do the same! Let us find a path in the V-T plane connecting the system in which we
are interested in (S+) with another system of which we know the free energy already (Srer)

We do simulations, we can choose any path we like
(we are not bound to the experimental V-T plane) A

As long as the potential energy of the system
depends on A, we can use any A we like




Thermodynamic integration '
The math LC/\®:

Then, we just integrate along the path, obtaining the free energy

LONDON CENTRE FOR

A=1
AN,V T
saprvny = [ (ANVINY
A=0 N,V,T

AN, V,T,\) = —kgTIn[Q(N,V, T, \)]

9 aA N,V,T, )\)) .
OA NV, T o

AA(N’V’T)://\i01<mé§\)\)>Ad)‘ 4

Now these are ensemble averages!

You can get them from a series of MD runs for different values of 4
- if you have a reference state, as you need the derivative!



Thermodynamic integration L
Ab initio LC/\®:
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Keep in mind:

The path must be reversible! If we encounter a phase transition in between, we are doomed!
There are very few systems we can use as Sref
* Liquids = LJ liquid
« Solids = Einstein crystal (non interacting particles harmonically coupled with their lattice sites)

Thermodynamics integration is relatively inexpensive for classical MD

Only recently feasible via AIMD

Recent Developments in ab initio
Thermodynamics

D. ALFE,! G. A. DE WIJS,?> G. KRESSE,* M. J. GILLAN%>

lGeological Sciences Department, University College London, Gower Street, London WCIE 6BT,
United Kingdom

2Electronic Structure of Materials, Research Institute for Materials, Toernooiveld 1, NL-6525 ED
Nijmegen, Netherlands

3Theoretical Physics Institute, Vienna Technical University, Wiedner Hauptstr. 8-10, A-1040, Austria
4Physics and Astronomy Department, University College London, Gower Street, London WCI1E 6BT,
United Kingdom

5DCI, CLRC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

Received 10 February 1999; accepted 1 September 1999



From 4 to a generic CV |
Order parameters LC/\ %,
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Rare events are literally everywhere: chemical reaction, phase transitions...
Every time you have a free energy barrier larger than ksT you are in trouble

We need some 4, some order parameters, or collective variables (CV) or (careful here) reaction
coordinates to describe the particular phenomenon we are interested in

Isomerization: angles

Ei) t=0ps a3,

|
[ i .,..-

Crystal nucleation:
Steinhardt parameters

Nt Word of caution:
Even a set of CVs is a serious simplification of the rare event




From A to a generic CV .
The Free Energy Surface
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Dimensionality reduction:
The true free energy surface (FES) of the process is a multidimensional hyper surface

FES
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We remap the problem on to a - manageable - number of CVs, so that:
It's easier to understand what’s going on

We can do enhanced sampling

Remember:
One is allowed to identify a CV as the actual reaction coordinate only very simple cases




From A to a generic CV |
A matter of partition functions LC /&
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How do we get the free energy surface (say, in the canonical
ensemble) with respect to a CV?

Let’'s assume we are interested in a single CV:

CV = f({r})

Recall that thanks to the partition function we can get any property we like as:

P = {p(z)) = %/p(w)f(ﬁ(x)) dx  where  Z = /]:(%(l’)) dz

Thus, the probability for the CV to be equal to a value s is (within the canonical ensemble!):

P(s) = Q(N,lv, . / S(F({r}) — 5) - e PP drap

B Q(va T) A31N / S} = 5) - e ar

Thermal

average
This is a configurational canonical partition function

Z(N,V,T, s) = / 5(F({r}) — 5) - e PNy
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How do we get the free energy surface (say, in the canonical
ensemble) with respect to a CV?

Let’'s assume we are interested in a single CV:

CV = f({r})

Recall that thanks to the partition function we can get any property we like as:

P = {p(z)) = %/p(w)f(ﬁ(x)) dx  where  Z = /]:(%(l’)) dz

Thus, the probability for the CV to be equal to a value s is (within the canonical ensemble!):

P(s) = Q(N,lv, . / S(F({r}) — 5) - e PP drap

B Q(va T) A31N / S} = 5) - e ar

Thermal

average
This is a configurational canonical partition function

Z(N,V,T, s) = / 5(F({r}) — 5) - e PNy



From A to a generic CV L
The magic formula LC/\ %,
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As such:
A(Na V7 T7 S) — _kBTlog(Z(Nv Vv T? S))

The Helmholtz free energy of the system associated with the collective variable s is
related a la Boltzmann to the configurational partition function with respect to s

However, remember, remember: as a rule, BU_t @
A(N,V,T,s) # A(N,V,T) =



Free energies from histograms |
Sometimes you don’t need enhanced sampling LC &
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In many cases, you can use the natural fluctuations of your system to
build a free energy surface for a specific quantity

Say, you run a simulation of a liquid in which the atoms are - on average - four coordinated.
What is the free energy associated with the coordination number (CN)?

A(N,V,T,CN) = —kgTIn Z(N,V,T,CN)

Provided your simulation is long enough...

The configurational partition function Z can be obtained from the normalised histogram of CN
Just one MD run, and you can already say something about it!

|

|

4
A(N,V,T.CN)

=
=

CN CN
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As all the enhanced sampling methods, the Blue Moon Ensemble (BME)
deals with rare events (which happens once in a Blue Moon)

A “blue moon” refers to the occurrence
of thirteen full moons in a calendar year
as opposed to the usual twelve. The
extra full moon, which occurs roughly
every 2.72 yeatrs, is called a blue moon.

* |tis used in ab initio simulations
» Possibly the most evocative name of them all

BME provides an elegant example of constrained molecular dynamics

Constraints = Remove some degree of freedom

Holonomic constraints = Depend exclusively on positions (at given times), but e.g. not on momenta

For instance. A particle that instead of moving randomly can only
sample the surface of a sphere is subject to the holonomic constraint:

2 +y’+ 22— R*=0

If the particle is subject to gravity as well = non holonomic
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The idea LC f
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Consider an holonomic constraint o acting on a given CV:

o(CV) = a(f(ir}))

Much like in a thermodynamic integration fashion, the BME consists in a
series of constrained MD runs for different values s of the CV




Blue Moon ensemble '
Something LC/\®:
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Hence, we reason again terms of free energy differences,
as the BME yields the derivative of A(N,V,T,s) with respect to s

OA(N,V, T, s) 0
= —kg1T— log(Z(N,V,T
88 B Os Og( ( y Vo 73))
— —knT —BH{r}) 4
B Z(NVTS / fQr}) =s)-e g
‘ It can be shown (not really an intuitive
demonstration, see e.g. Tuckerman...)

) OA(N,V,T,s)
5 (%) (98

AA(N,V,T,s) = ds

Which is basically equivalent to what we have obtained for thermodynamic integration

(The actual implementation of the BME is not that easy...)



Umbrella Sampling

Restraining the CV LC
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Constraints vs restraints
Constraint: prepare the system/CV in a certain state/value and force it to stay there e.g. fixing bond
lengths or angles... SHAKE, LINKS...
* Restraint: push the system/CV toward a particular state/value by means of some bias e.g. harmonic
potential restraining atomic positions or energy bias acting on a CV

Blue Moon ensemble = constraints the CV
Umbrella Sampling = restraints the CV

Usually, an harmonic restraint (an harmonic potential W) pushing the system toward a
specific value s* of the CV is added to the actual potential energy of the system

Utot(r) — Uunbz’ased(r) + W(S(r)’ 3*(1')) 4



Umbrella Sampling L
Building a collection of probabilities LC/\®:
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Again, you run several MD runs, each one for a given value of s*

Now, from each MD run you get a biased probability distribution for the CV s*()

5*(2) —7 Pbiased(S*(i))



&

Umbrella Sampling '
Reweight LC/\®:
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However, we need the fotal unbiased probability distribution to get the free energy profile A(s).

Pbiased(s*(l)) A(N7 V, T7 3)
P, rase 3*(2)

’ d( ) Punbz’ased(s)
Pbiased(S*(n)) - |

The most common way of doing that = the Weighted Histogram Analysis Method, aka




Umbrella Sampling '
WHAM - The idea LC/\®:
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We get the unbiased P(s) from the biased P(s) as:

Punbiased(s D) = Pyiasea(s*D) - e BANVITW (5,570)) =W (5,57

Bias potential

The WHAM write the total unbiased probability as a linear combination
(weighted sum) of the unbiased probabilities

NMDruns
* (2 * (1
Punbiased(s) X § mz(s ( )) . Punbz'ased(s ( ))
=1
NMDruns
* (1)
Where the weights have to: Z m;(s") =1
Be normalised - ——7 i=1

Minimise the statistical error with respect to the total

unbiased probability\ | 8(02 [Punbias§d(3)]) —0
—V Om;(s*()
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WHAM - The weights LC/\®:
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In order to obtain the weights mi(s*(i)) we have to minimise a function o [Punbmsed(s)]

taking into account the following constraint:
NMD runs

Z mi(s* @) =1

1=1

This problem can be solved using Lagrange multipliers to give

NMD runs ZNMD runs 0.2 [Punbiased(S*(j)>]

Punbiased(s) X Z =1

; o *(z’))
i—1 o [Punbz'ased(s ! )]

Punbiased(s

Some other manipulations can be done. In particular:

«(i (i o s DV T (5. 5% (D)

{

As such, the WHAM actually involves a set of equations to be solved in a self consistent fashion

We don’t know A(N,V, T, W)!
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« Rare events are ubiquitous and important
» Because of the timescales involved we have to use enhanced sampling
methods (in ab initio MD, free energy based methods)
« We cannot compute the free energy directly but we can get free energy
differences via the derivative of the free energy (Thermodynamic Integration)
It is useful to describe the free energy in terms of few order parameters to get a
low dimensional free energy surface
« Many methods exist to explore that low dimensional surface
* Blue Moon Ensemble: constraints the order parameter
* Umbrella Sampling: restraints the order parameter

* Learning Outcomes

« Coarse graining the phase space: The concept of Collective Variable
* The basics of free energy-based enhanced sampling methods

Next: metadynamics - a very efficient way to reconstruct free energy surfaces



