
Exercises 
!

You just can’t do that!  
• Friction is not a conservative force! 
• Us is not even a potential, it is a force multiplied by a velocity (power)

Us =
1

2
bẋ

2

Fs = �rUs

Specifically, Us it’s the (1D) Rayleigh dissipation function, which 
gives the actual friction force Fs via the velocity gradient as:

F
s

= �r
ẋ

U
s

Then, you can write down Newton equations of motion as:

In this way we have not specified a Lagrangian,  
nor we have used the Eulero-Lagrange equations…

mẍ+ bẋ+ kx = 0



Exercises 
!

Can we write down a Lagrangian containing a friction term?

Yes - by basically cheating, and modifying the way in which we 
write the kinetic energy. For instance, the following Lagrangian:

Gives exactly the same equations of motions as above

L(x, ẋ) = 1

2
e

µt(mẋ

2 � kx

2), µ =
b

m

However…

The “correct” way to proceed when you have some non conservative force in your 
system is: 

• Write the Lagrangian as usual, omitting the terms originating from the non 
conservative force 

• Solve the modified Eluero-Lagrange equation:

Where 𝛯 includes every non conservative force you have in your system. 
Again, you end up with the same equations of motions, this time avoiding to modify the Lagrangian

d

dt

✓
@L
@ẋ

◆
� @L

@x
= ⌅



A peek into the wondrous realm of the  
Enhanced Sampling (Vol.1) 

Electronic Structure Methods for Materials Modelling

• Learning Outcomes  
• Coarse graining the phase space: The concept of Collective Variable 
• The basics of free energy-based enhanced sampling methods



Outline

• Why do we need enhanced sampling methods? 
• Rare events 
• Free energy vs path sampling methods 

• Thermodynamic integration 
• Order parameters (collective variables) 
• Blue Moon ensemble 
• Umbrella Sampling 
• Path sampling methods 

Next: Enhanced sampling (Vol.2)



Rare events 
And why they matter 

What is a rare event?

In molecular dynamics, a rare event is something that happens on a 
timescale much longer than the one you can afford

Many many processes of interest fall into this class of problems

What do you do when you want to simulate something that would never  
(well, maybe several decades…) happen in your MD simulation?

Protein folding
Crystal nucleation
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Note that a process can be a rare event for ab initio MD (102-3 particles, 102-3 ps) 
but not for classical MD (105-6 particles, 105-6 ps).  

For example, the structural relaxation of a supercooled liquid



s - same order parameter  
(more on that later…)

Enhanced Sampling 
Free energy based vs path sampling methods 

Enhanced sampling methods:

The goal: 
Simulate the rare event of interest disrupting as little as 

possible the actual dynamics of the system

Free energy methods
Path sampling 

methods

A
(N

,V
,T

,s
)

A typical scenario:

Natural fluctuations of the system 

Free energy barrier

They try to reconstruct the 
free energy surface

They meddle with the way in which the 
system evolves in time

Tell a lot about thermodynamics 
(kinetics it’s tricky)

Tell a lot about kinetics 
(and thermodynamics as well)

Doable ab initio 
(with some effort)

Still far beyond the reach of ab initio MD



The basic goal 
Obtaining Free Energies 

In principle, we know that (in e.g. NVT)…

P = hp(x)i = 1

Q(N,V, T )
·
Z

p(x) · e��H(x)
dx

For the (Helmoltz) free energy A=E-TS, though…

A = hE � TSi = 1

Q(N,V, T )
·
Z

(E � TS) · e��H(x)
dx

The problem with evaluating entropy… 
• Does not depend on x (position, momenta) only! 
• Cannot be evaluated by an ensemble average 
• It is related to the on the available volume of accessible phase space 

(i.e. the partition function!)

S = kB ln[⌦(N,V,E)]

In fact…

A(N,V, T ) = �kBT ln[Q(N,V, T )]



Thermodynamic integration 
The idea 

As it happens, experiments can’t get free energies directly as well.  
They measure derivatives of free energies, such as:

✓
@A

@V

◆

NT

= �P or

✓
@A/T

@1/T

◆

V N

= E

Thus, we should do the same! Let us find a path in the V-T plane connecting the system in which we 
are interested in (S1) with another system of which we know the free energy already (Sref)

𝝀

S1

Sref

𝝀=0

𝝀=1

We do simulations, we can choose any path we like 
(we are not bound to the experimental V-T plane)

As long as the potential energy of the system 
depends on 𝝀, we can use any 𝝀 we like



Thermodynamic integration 
The math 

Then, we just integrate along the path, obtaining the free energy

✓
@A(N,V, T,�)

@�

◆

N,V,T

=??

�A(N,V, T ) =

Z �=1

�=0

✓
@A(N,V, T,�)

@�

◆

N,V,T

d�

�A(N,V, T ) =

Z �=1

�=0

⌧
@U(�)

@�

�

�

d�

Now these are ensemble averages!

You can get them from a series of MD runs for different values of 𝝀  
- if you have a reference state, as you need the derivative!

A(N,V, T,�) = �kBT ln[Q(N,V, T,�)]



Thermodynamic integration 
Ab initio 

Keep in mind:  !
The path must be reversible! If we encounter a phase transition in between, we are doomed! 

There are very few systems we can use as Sref 
• Liquids ➙ LJ liquid 
• Solids ➙ Einstein crystal (non interacting particles harmonically coupled with their lattice sites)

Thermodynamics integration is relatively inexpensive for classical MD

Only recently feasible via AIMD
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From 𝝀 to a generic CV 
Order parameters 

Rare events are literally everywhere: chemical reaction, phase transitions…  
Every time you have a free energy barrier larger than kBT you are in trouble

We need some 𝝀, some order parameters, or collective variables (CV) or (careful here) reaction 
coordinates to describe the particular phenomenon we are interested in

an active research domain.[25] The relatively new metady-
namics method has particularly attracted our attention. It
was first proposed by Laio and Parrinello and enables an
enhanced sampling of separated regions in phase space, si-
multaneously mapping the underlying free-energy landscape
as a function of a limited number of collective variables.[26]

The particular implementation is based on the work of Ian-
nuzi et al.[27]

Prior to the modeling of the 1-azaallylic anions, we mod-
eled the liquid structure of pure THF by using first-principle
molecular dynamics calculations. The liquid structure of
THF was recently assessed via hydrogen/deuterium isotopic
substitution neutron-diffraction techniques by Bowron,
Finney, and Soper.[28] A periodic cubic simulation cell was
filled with 64 THF molecules. This choice represents an op-
timal compromise between computational cost and a proper
embedding of the solute in the solvent. The simulation cell
size was chosen to correspond with the experimental density
of 0.88 kgdm!3.[29] The performance of the THF model was
validated by calculating the radial distribution function
(RDF) of the molecular centers, which was found to be in
excellent agreement with the benchmark RDF reported in
reference [28] (see Supporting Information). Moreover, the
MD simulations yielded a conformational distribution of
59 % twisted and 41 % oxygen envelope, indicating a thor-
ough sampling of the system.[28]

After the THF model had been successfully assessed, it
was applied to study the degree of coordination of the 3-
chloro-1-azaallylic anions in solution. The coordination
number for lithium enolates in ethereal solvents is rather
difficult to establish but four-coordinate lithium cations
have been clearly recognized in NMR studies of solvent sep-
arated ion pairs.[30] For contact ion pairs, coordination is ex-
pected less important because of the electrostatic effect of
the counter ion. Theoretically the structures of a variety of
organic lithium compounds were determined in the gas
phase and in solvation using microsolvation with explicit
ethereal ligands and/or continuum models.[31] For the 1-
azaallylic anions as encountered here which are subject to
large steric crowding, the degree of coordination is not a
priori clear and can not be deduced straightforwardly from
the experimental data. Isothermal–isobaric (NPT) molecular
dynamics simulations during a period of 2.5 ps show that the
Z-isomer 1 is monocoordinated whereas the E-isomer 2 fea-
tures a two-fold coordination with THF (illustrated in
Figure 3). In the E-isomer 2 the halogen–lithium coordina-
tion is not present which allows a second THF molecule to
coordinate with the counter ion.

In order to obtain insight into the occurrence of only one
stereoisomer in case of 3-chloro-3-methyl-1-azaallylic anions
1 and 2, we decided to construct the free-energy landscape
connecting the basins of the two isomers. To this end we ap-
plied the metadynamics method in which the dihedral
angles Cl-C3-C2-N and C4-C3-C2-N were chosen as collec-
tive variables. This choice guarantees the independent
movement of the methyl and chlorine substituents. The re-
sulting free-energy landscape as a function of the two dihe-

dral angles is displayed in
Figure 4. The Gibbs free energy
barriers for E-to-Z and Z-to-E
isomerization amount to
(107.1"12.1) kJ mol!1 and
(128.6"12.1) kJ mol!1, respec-
tively.[32] These barriers are
high, preventing isomerization
at the experimental tempera-
ture. The Z-isomer 1 is more
stable than the E-isomer 2 by
DGZ–E = (21.5"12.1) kJ mol!1,
which indicates that the experi-
mentally observed Z-isomer 1
is thermodynamically favored.
Within a static cluster approach
using a combined explicit/im-
plicit solvent model we were
unable to determine the transi-
tion state for E/Z isomerization

as the coordination number varies during the chemical
transformation. Moreover, the stability of the Z-isomer 1
with respect to the E-isomer 2 was 20 kJ mol!1 too high
compared to the metadynamics calculations. By capturing
the movement of both dihedral angles, we were able to ob-
serve the sp2 to sp3 hybridization transition of the C3 carbon
atom upon rotation, a well-known feature of rotations about
allylic bonds. This is reflected in the fact that the saddle
point, denoted as (E–Z)!, does not lie on the linear pathway
connecting both isomers, which confirms a posteriori the im-
portance of capturing the movement of both dihedral
angles.

Figure 3. Characteristic snap-
shot of the MD simulation of
the Z-isomer 1 (A) and the E-
isomer 2 (B) solvated in THF.

Figure 4. Gibbs free energy profile (in kJ mol!1) governing the E–Z iso-
merization of the lithiated 3-chloro-1-azaallylic anion in THF. The posi-
tions of both stable isomers E (2) and Z (1) and the saddle point (E–Z)!

are added. Note that the two collective variables feature a 2p periodicity.

www.chemeurj.org ! 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Eur. J. 2009, 15, 580 – 584582
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presence of several growing crystalline nuclei in the simulations
of homogeneous crystallization.26

■ CONCLUSIONS
We have investigated the heterogeneous crystallization of GeTe
at the interface between the supercooled liquid and the
crystalline phases at 500 and 700 K, two representative
temperatures of interest for actual PCM devices. It turns out
that at 500 K, close to the glass transition temperature,
homogeneous nucleation in the melt is a competitive process
with respect to the heterogeneous crystallization from the
interface, as the presence of the crystalline nuclei hinders the
growth of the interface and the propagation of the crystalline
front. The crystal growth velocity computed for the (100)
crystalline surface is comparable to those obtained in the case
of homogeneous growth from the melt. Indeed, our results
confirm that in the 500−700 K range GeTe crystallization is
diffusion-limited and can be properly described by classical
nucleation theory. The heterogeneous crystal growth proceeds
at both 500 and 700 K with a rough, continuous mechanism.
The diffusion rate of crystalline atoms on the surface is lower
than the rate of attachment per surface site of atoms from the
melt; hence, the interfaces develop a certain roughness in time,
as quantified by the height−height correlation function. It turns

out that the crystal growth front displays a finite roughness that
grows with time, suggesting a possible kinetic roughening at
700 K. The same continuous growth mechanism holds at the
(111) surface, though the latter grows more slowly than the
(100). In fact, the (111) surface tends to facet with time by
exposing {100} facets, more or less extended depending on
temperature, along which crystallization rapidly proceeds. The
faster growth of the {100} planes with respect to the {111}
planes could be an additional, kinetic motivation for the
presence of the slow growing (111) faces in GeTe micro-
crystals. Finally, we built a polycrystalline interface made of
different grains, a configuration close to the actual geometry of
the PCM devices. It turns out that no grain boundary
rearrangements takes place on the nanosecond time scale.
Each grain grows more or less independently in a columnar
fashion with an overall growth velocity lower than both the
(100) and (111) surfaces. The temperature dependence of the
crystal growth velocity in the temperature range 500−700 K is
mostly controlled by the atomic diffusivity in the supercooled
liquid phase.

■ ASSOCIATED CONTENT
*S Supporting Information
MD simulations, polycrystalline model analysis, and figures
showing crystalline clusters, fraction of crystalline atoms,
crystalline surfaces, probability density distribution, bidimen-
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Figure 4. (a) C111 (red) and C100 (blue) crystalline grains in the MP
polycrystalline model at the beginning (t0) and at the end (tend) of the
crystallization simulation. Projections along the xy planes are shown.
(b) Same as above, but this time the snapshots are projected along the
xz plane. (c) Anisotropic growth of C111 along the ⟨100⟩ direction.
Red balls depict the final configuration at t = 500 ps, while green balls
follow the temporal evolution. The inset on the right shows the same
configuration viewed along the normal n to a (100) plane.
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Crystal nucleation:  
Steinhardt parameters

Isomerization: angles

Word of caution: 
Even a set of CVs is a serious simplification of the rare event



From 𝝀 to a generic CV 
The Free Energy Surface 

Dimensionality reduction: 
The true free energy surface (FES) of the process is a multidimensional hyper surface

We remap the problem on to a - manageable - number of CVs, so that: 
• It’s easier to understand what’s going on 
• We can do enhanced sampling 

Remember: 
One is allowed to identify a CV as the actual reaction coordinate only very simple cases

CV

FES



From 𝝀 to a generic CV 
A matter of partition functions 

How do we get the free energy surface (say, in the canonical 
ensemble) with respect to a CV?

Let’s assume we are interested in a single CV:

CV = f({r})

Recall that thanks to the partition function we can get any property we like as:

P = hp(x)i = 1

Z
Z

p(x)F(H(x)) dx

Thus, the probability for the CV to be equal to a value s is (within the canonical ensemble!):

Z =

Z
F(H(x)) dxwhere

P (s) =
1

Q(N,V, T )

Z
�(f({r})� s) · e��H({r,p})drdp

=
1

Q(N,V, T )

1

�3N

Z
�(f({r})� s) · e��H({r})dr

Thermal 
average

This is a configurational canonical partition function

Z(N,V, T, s) =

Z
�(f({r})� s) · e��H({r})dr



From 𝝀 to a generic CV 
A matter of partition functions 

How do we get the free energy surface (say, in the canonical 
ensemble) with respect to a CV?

Let’s assume we are interested in a single CV:

CV = f({r})

Recall that thanks to the partition function we can get any property we like as:

P = hp(x)i = 1

Z
Z

p(x)F(H(x)) dx

Thus, the probability for the CV to be equal to a value s is (within the canonical ensemble!):

Z =

Z
F(H(x)) dxwhere

P (s) =
1

Q(N,V, T )

Z
�(f({r})� s) · e��H({r,p})drdp

=
1

Q(N,V, T )

1

�3N

Z
�(f({r})� s) · e��H({r})dr

Thermal 
average

This is a configurational canonical partition function

Z(N,V, T, s) =

Z
�(f({r})� s) · e��H({r})dr



From 𝝀 to a generic CV 
The magic formula 

As such:

The Helmholtz free energy of the system associated with the collective variable s is 
related á la Boltzmann to the configurational partition function with respect to s

However, remember, remember: as a rule,

A(N,V, T, s) 6= A(N,V, T )

A(N,V, T, s) = �kBT log(Z(N,V, T, s))



Free energies from histograms 
Sometimes you don’t need enhanced sampling 

In many cases, you can use the natural fluctuations of your system to 
build a free energy surface for a specific quantity

Say, you run a simulation of a liquid in which the atoms are - on average - four coordinated.  
What is the free energy associated with the coordination number (CN)?

A(N,V, T, CN) = �kBT lnZ(N,V, T, CN)

Provided your simulation is long enough…

CN

P
(C

N
)

The configurational partition function Z can be obtained from the normalised histogram of CN 
Just one MD run, and you can already say something about it!

CN

A
(N

,V
,T

,C
N

)



Blue Moon ensemble 
The idea 

!
• Not particularly popular as we speak 
• It is used in ab initio simulations 
• Possibly the most evocative name of them all

A “blue moon” refers to the occurrence 
of thirteen full moons in a calendar year 

as opposed to the usual twelve. The 
extra full moon, which occurs roughly 

every 2.72 years, is called a blue moon.

As all the enhanced sampling methods, the Blue Moon Ensemble (BME) 
deals with rare events (which happens once in a Blue Moon)

BME provides an elegant example of constrained molecular dynamics

Constraints ➙ Remove some degree of freedom

Holonomic constraints ➙ Depend exclusively on positions (at given times), but e.g. not on momenta

For instance. A particle that instead of moving randomly can only 
sample the surface of a sphere is subject to the holonomic constraint:

x

2 + y

2 + z

2 �R

2 = 0

If the particle is subject to gravity as well ➙ non holonomic 



Blue Moon ensemble 
The idea 

Consider an holonomic constraint 𝜎 acting on a given CV:

�(CV ) = �(f({r}))

Much like in a thermodynamic integration fashion, the BME consists in a 
series of constrained MD runs for different values s of the CV

s(i)

s(f)

s(1)
s(2)

s(N)



Blue Moon ensemble 
Something 

Hence, we reason again terms of free energy differences, 
as the BME yields the derivative of A(N,V,T,s) with respect to s 

@A(N,V, T, s)

@s
= �kBT

@

@s
log(Z(N,V, T, s))

= �kBT
1

Z(N,V, T, s)

Z
@

@s
�(f({r})� s) · e��H({r})dr

�A(N,V, T, s) =

Z s(f)

s(i)

@A(N,V, T, s)

@s
ds

It can be shown (not really an intuitive 
demonstration, see e.g. Tuckerman…)

Which is basically equivalent to what we have obtained for thermodynamic integration

(The actual implementation of the BME is not that easy…)



Umbrella Sampling 
Restraining the CV 

Constraints vs restraints 
• Constraint: prepare the system/CV in a certain state/value and force it to stay there e.g. fixing bond 

lengths or angles… SHAKE, LINKS… 
• Restraint: push the system/CV toward a particular state/value by means of some bias e.g. harmonic 

potential restraining atomic positions or energy bias acting on a CV

Blue Moon ensemble ➙ constraints the CV 
Umbrella Sampling ➙ restraints the CV

Usually, an harmonic restraint (an harmonic potential W) pushing the system toward a 
specific value s* of the CV is added to the actual potential energy of the system

U
tot

(r) = U
unbiased

(r) +W (s(r), s⇤(r))

W (s(r), s⇤(r)) =
1

2
(s(r)� s⇤(r))2



Umbrella Sampling 
Building a collection of probabilities 

Again, you run several MD runs, each one for a given value of s*

s*(i)

s*(f)

s*(1)
s*(2)

s*(N)

Now, from each MD run you get a biased probability distribution for the CV s*(i)

s⇤(i) ! Pbiased(s
⇤(i))



Umbrella Sampling 
Reweight 

However, we need the total unbiased probability distribution to get the free energy profile A(s).

The most common way of doing that ➙ the Weighted Histogram Analysis Method, aka

Pbiased(s
⇤(1))

Pbiased(s
⇤(2))

Pbiased(s
⇤(n))

· · ·
Punbiased(s)

A(N,V, T, s)

s



Umbrella Sampling 
WHAM - The idea 

We get the unbiased P(s) from the biased P(s) as:

Free energy associated to 
the bias potential 

We don’t know it - yet…

Bias potential

The WHAM write the total unbiased probability as a linear combination 
(weighted sum) of the unbiased probabilities

Punbiased(s
⇤(i)) = Pbiased(s

⇤(i)) · e��[A(N,V,T,W (s,s⇤(i)))�W (s,s⇤(i))]

Punbiased(s) /
NMDrunsX

i=1

mi(s
⇤(i)) · Punbiased(s

⇤(i))

Where the weights have to: 
• Be normalised 
• Minimise the statistical error with respect to the total 

unbiased probability

NMDrunsX

i=1

mi(s
⇤(i)) = 1

@(�2[Punbiased(s)])

@mi(s⇤(i))
= 0



Umbrella Sampling 
WHAM - The weights 

In order to obtain the weights mi(s
⇤(i)) we have to minimise a function �2[Punbiased(s)]

taking into account the following constraint:
NMD runsX

i=1

mi(s
⇤(i)) = 1

This problem can be solved using Lagrange multipliers to give

Punbiased(s) /
NMD runsX

i=1

PNMD runs

j=1 �2[Punbiased(s⇤(j))]

�2[Punbiased(s⇤(i))]
Punbiased(s

⇤(i))

Some other manipulations can be done. In particular:

�2[Punbiased(s
⇤(i))] / �2[Pbiased(s

⇤(i))] · e2�[A(N,V,T,W (s,s⇤(i)))�W (s,s⇤(i))]

As such, the WHAM actually involves a set of equations to be solved in a self consistent fashion

We don’t know A(N,V,T,W)!



End of lesson 
A recap 

• Rare events are ubiquitous and important 
• Because of the timescales involved we have to use enhanced sampling 

methods (in ab initio MD, free energy based methods) 
• We cannot compute the free energy directly but we can get free energy 

differences via the derivative of the free energy (Thermodynamic Integration) 
• It is useful to describe the free energy in terms of few order parameters to get a 

low dimensional free energy surface 
• Many methods exist to explore that low dimensional surface 

★ Blue Moon Ensemble: constraints the order parameter 
★ Umbrella Sampling: restraints the order parameter

Next: metadynamics - a very efficient way to reconstruct free energy surfaces

• Learning Outcomes  
• Coarse graining the phase space: The concept of Collective Variable 
• The basics of free energy-based enhanced sampling methods


