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Electronic Structure Methods for Materials Modelling

An impossibly short introduction to

Disordered Systems
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* |t's all about disorder
» Gases, liquids, amorphous solids, glasses

* Disordered - condensed - phases

 Structure (topology)
» Electronic structure

* Transport coefficients

* Green-Kubo relations
* Linear response

* Next: Ab-initio Random Structure Search [Prof. C. Pickard]



It’s all about disorder '
And yet... LC/\®:

% :mﬁ%
Most of the matter in the universe is in disordered states AL eNeL oy
Gases

Plasmas

Liquids

Amorphous solids and glasses

If you open any electronic structure book, disordered systems get usually very little (if any) space

This is because is so much easier to devise, demonstrate, implement and verify theories and
algorithms when dealing with ideal systems - like a perfect crystalline solid

e g%%

When translational, long range order is lost,
the math gets tough and the level of approximation increases

“Disordered systems” mean too many topics even for a big book. In here:
« An introduction to the electronic structure of amorphous solids - and why it matters
» A brief discussion about transport coefficient via equilibrium (ab initio) MD



Structural disorder '
Tessellation time LC/\®:
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How do characterise the structure of a disordered system
(liquid, amorphous solid)?

For a crystalline system, the only things you need are:
 The cell matrix N S
» The lattice positions within the cell

Alternatively, you can construct Wigner-Seitz cells:
« They are still primitive cells
Contains every information you need with respect to the symmetry of the system
If you switch to reciprocal space, the Wigner-Seitz cell becomes the first Brillouin zone

Real
space

space




Structural disorder '
Tessellation time E%%@ LC! .

Wigner-Seitz cells are only a special type of
Constructed in exactly the same way, but this time for a generic (no translational invariance) set of points

That's what you need to characterise your disordered system:
A (probability density) distribution of the volume of the Vioronoi pqu.hgd[a. (3D)

And there’s more! i
What if you take the “inverse” (the dual graph) of the Voronoi tessellation?



Structural disorder

i /
Tessellation time LG\ %
TN
, 00000 * Delaunay triangulation
- In 2D:
' * Red points: they define the Delaunay tessellation

« Black points: the actual set of 2D points you want to tassellate
» For each circumcircle of the triangle centred around every red point,
there are no black points inside

In 3D:
Delaunay simplexes
(non-necessarily-regular tetrahedra)

They take into account the empty space within your system




Structural disorder '
Short-range order LC/\ %,
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The topology of your disordered system is only half of the story.
You need a measure of the short-range order of your system

\4

Simplest option: the radial distribution function

N

9(r) = 47‘(‘7“21]V<p> S‘ S‘

solute—solute

solute—solvent »
(cage)




Structural disorder N
Short-range order LC/\®:
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CRYSTAL GLASS GAS LONDON CENTRE FOR
(a) A (b) (c)
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+ Can be derived via statistical mechanics
» Related to the structure factor (the quantity experiments deal with - unless they actually
manage to count the particles...) via Fourier transform « ¢ ¢ o o o o , ,

« The integral of the g(r) gives the coordination number 'eee,,
 |ll defined for non-homogeneous system - there are workaround, though... 0
N [ ]
1 : E
So) =1+ < [ e S bt (- >> -
N v .
k=1,k#i

Short range order (radial distribution function)

+

Topology (Voronoi tessellation)

What about crystalline order within a
disordered network?

!l Ensemble average !!

Fingerprint of your disordered system



Electronic structure '
Goodbye Bloch LC/\®:

Disordered systems ¢ ¢ o o -} Bloch theorem? Forget about it! ONDON CENTRE TR

[_;_mv + VCT(r)] [(r)) = El|Y(r)), Vor(r) = Vor(r + Riattice)

Disordered systems
* You don’t have a periodic potential anymore
* No more plane waves extending throughout the whole system
« Band diagrams are (almost) no more

In addition to extended states:
Localized electronic states

Basically the whole of |¥|? is concentrated
in a small region of the system
_ (can be a bupch of atoms)
Localized state ﬂ .
// \ Decays exponentially with distance
7 -
/[‘// \\:e’aR
\ . .
e N Localized states in crystals?
Zﬂv/'\U V/\\J U f\‘]\;‘\&"
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Electronic structure
The Anderson framework Lc ‘®
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, In crystals: extrinsic states Continuous
Localized states 5 « In amorphous solids or liquids: intrinsic states’ * > spectrum

The Anderson localisation = delocalisation transition

Let us start from a sort of tight-binding picture:
The band structure is obtained as a superposition of localised states, one for each atom

In a crystal, at every atom correspond a single potential well
All the wells have the same depth - all sites are equivalent

—
C

B is the bandwidth of the crystalline states - in the absence of disorder



Electronic structure
The Anderson Hamiltonian LC &5 C
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In e.g. an amorphous solid the well depths vary from site to site in a random way
The sites are not equivalent anymore

O W is the width of the distribution the well depths
Quantifies the energy range of the disorder-induced spatial fluctuations of the potential energy

Not impossibly disordered 4. ..

Extended states persist Now, it's all about W/B

Small

The Anderson Hamiltonian:

N.S’ztes NS’ztes
HAnderson — E ERandom zC Ci + E Tz jc
' j=1,j7i A&

Hopping integral:
Measures the coupling between
different sites

Randomly chosen from an P al
energy distribution of width W



Electronic structure 5 )

The power of DFT LC\-®
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« Even in disordered system there is a valence band - and possibly an energy gap (some glasses are
transparent, after all...)
« Even if the degree of disorder is not that large, states in the tails of the band are localised

Pseudogap
Possibly too large for a (visible light) photon...

(a) CRYSTAL : | ‘
wil " $
' 12 K
EXTENDED Gl N I8  EXTENDED .
STATES %: STATES i  STATES .
f 3 3 *
g | : :
< | { °
VALENCE BAND CONDUCTION BAND ¢
g} EV EC ° 4
~ °
< |(b) GLASS .
wn |—m—m l | 4
" §| 14 . «
o ml =§ . * ’ d
£ | EXTENDED > LOCALIZED |> EXTENDED . v
3 STATES 5| STATES |5 STATES .
[Ty} o ID ®
o | °
g :@ L e0® DFT can get these!
I
|

(Large models, no periodicity, ensemble averages...)
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Dynamical properties '
Still equilibrium properties! LC/\®:
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Think about a metallic liquid.
In addition to structural properties (topology, short range order...),
one is usually interested in dynamical properties as well

An example: the diffusion coefficient
A single number that tells you a lot about your system
(it's not about mobility alone, the diffusion coefficient is an essential ingredient in many situations...)

O
O 00~ O
to Ot1 OOtn

The diffusion coefficient is a transport coefficient. And it's not the only one out there:
 Diffusion (in response to a concentration gradient)

» Viscosity (in response to external stress)

« Thermal conductivity (in response to a temperature gradient)

 Electrical conductivity (in response to an external electric field)

All of these quantities refer to equilibrium properties of the system,
which however can be calculated by looking at the dynamics of the system in time
Or, by actually introducing the perturbation by hand = non equilibrium MD



Dynamical properties '
Green-Kubo relations LC ;D

s
All these transport coefficients can be obtained within the same formalism: NANOTECHNOLOGY

the Green-Kubo relations

©.@)

e | (p(t") - p(t*))dt

Transport coefficients are related to the time integral of an autocorrelation function

For instance, for the diffusion coefficient: oo ® P

particles and all the time windows

o0 S \ 4
D = / <'U(O) . 'U(t).>dt Ensemble average over all the
0

For each particle i and for each time origin t*
(In principle. In reality, some tricks apply)



Dynamical properties S I

Green-Kubo relations LC\-®
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Autocorrelation functions are equilibrium properties of the system

\4

They measure the correlation of some property (for example the velocity) at time t* and tt,
along the whole equilibrium trajectory

v They contain an awful lot of information about the
D, (q,t) = i 3" expig - [7(0) — 7(t)] dynamics of your system

/ (just from the density and the velocities: mobility,
/ structural relaxation, dynamical heterogeneities...)
Xa(g,t) = N [(1@4(a, %) = (124 (q,6)])*]

=

But

U

» The ergodic hypothesis needs to hold (you truncate the integral at a certain time)
» All of this work exclusively within linear yJesponse theory

v

The perturbation you apply to the system is small enough so that you can leave out second order terms




Dynamical properties '
Linear response theory LC/\®:
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It's our old friend the Liouville equation again!
0 .
Ef(xvt) = — & Vf(il?,t)

Recall the equilibrium case:

0

And the Liouville equation becomes:

t-Vf(x,t)=0

If you don’t specify a particular ensemble,
any function of the Hamiltonian is a solution of the equilibrium Liouville equation

f(@) o E(H(x)

A\ 4
P = (pla)) = 5 [ @) F () da



Dynamical properties '
Linear response theory LC %
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This time, we introduce a generic perturbation
(can be a concentration gradient, a temperature gradient, an electric field...)

The ensemble distribution function will be:

Flat) = fo(H(z))+ Az, t) v

Unperturbed ensemble distribution
function - it satisfies the equilibrium

And similarly the Liouville operator becomes: Liouville equation
BV = (d+ Az(t))v T Vo) =0
. Leave out the second order term. ..

0

(a N j;ov) Af(w,t) = —Ad(0)V fo(H(z))

This is the “linearized” non-equilibrium Liouville equation, which ultimately leads to the Green-Kubo formalism
(Other derivations exist...)

The key point:

Within linear response theory, a non-equilibrium average can be generated
entirely within an equilibrium calculation

Ab initio MD is (slowly) getting there!



LONDON CENTRE FOR



