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• Next: Ab-initio Random Structure Search [Prof. C. Pickard]

• It’s all about disorder 
• Gases, liquids, amorphous solids, glasses 

• Disordered - condensed - phases 
• Structure (topology) 
• Electronic structure 

• Transport coefficients 
• Green-Kubo relations 
• Linear response



It’s all about disorder 
And yet…

Most of the matter in the universe is in disordered states 
• Gases 
• Plasmas 
• Liquids 
• Amorphous solids and glasses

If you open any electronic structure book, disordered systems get  usually very little (if any) space

This is because is so much easier to devise, demonstrate, implement and verify theories and 
algorithms when dealing with ideal systems - like a perfect crystalline solid 

When translational, long range order is lost,  
the math gets tough and the level of approximation increases

“Disordered systems” mean too many topics even for a big book. In here: 
• An introduction to the electronic structure of amorphous solids - and why it matters 
• A brief discussion about transport coefficient via equilibrium (ab initio) MD



Structural disorder 
Tessellation time

How do characterise the structure of a disordered system  
(liquid, amorphous solid)?

For a crystalline system, the only things you need are: 
• The cell matrix 
• The lattice positions within the cell

Alternatively, you can construct Wigner-Seitz cells: 
• They are still primitive cells 
• Contains every information you need with respect to the symmetry of the system 
• If you switch to reciprocal space, the Wigner-Seitz cell becomes the first Brillouin zone

Real 
space

Reciprocal 
space



Structural disorder 
Tessellation time

Wigner-Seitz cells are only a special type of Voronoi cells 
Constructed in exactly the same way, but this time for a generic (no translational invariance) set of points

That’s what you need to characterise your disordered system: 
A (probability density) distribution of the volume of the Voronoi polyhedra  (3D)

And there’s more! 
What if you take the “inverse” (the dual graph) of the Voronoi tessellation?



Structural disorder 
Tessellation time

Delaunay triangulation

In 2D:  
• Red points: they define the Delaunay tessellation 
• Black points: the actual set of 2D points you want to tassellate 
• For each circumcircle of the triangle centred around every red point, 

there are no black points inside 

In 3D: 
Delaunay simplexes  

(non-necessarily-regular tetrahedra)

They take into account the empty space within your system

a)

b)



Structural disorder 
Short-range order

The topology of your disordered system is only half of the story.  
You need a measure of the short-range order of your system

Simplest option: the radial distribution function
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grated area equal to the coordination z, and possesses a peak value p ( r , )  lying 
well above the smeared-background value of 47rEr:. Here Z is the number den- 
sity (atoms/cm3) of the solid. With increasing r, p(r) exhibits damped oscil- 
lations about 47r;ir2, with which it eventually merges. In amorphous solids the 
convergence of p ( r )  to 47rZr2 is rapid. The utility of the RDF for structural 
characterization comes down to the amount of information which is extract- 
able from oscillations in p ( r )  before it merges with 47rEr2. A schematic compar- 
ison of RDF’s representative of crystals, glasses, and gases (in correspondence 
with the structural sketches shown previously in Fig. 1.6) is contained in 
Fig. 2.3.  

The information about the average density appears in the RDF in the 
form of the large-r asymptote, the light dashed curve of Fig. 2.3.  Another form 
of this function that is sometimes used is the reduced RDF g(r), which is equal 
to (l/r)p(r) - 47%. For g(r) the large-r asymptote is zero, and the average 
density appears in the form of the initial negative slope. 

The radial distribution function is widely used to characterize, albeit in- 
completely, the structure of glasses. The utility of this characterization derives 
from the fact that it is derivable, via Fourier transformation, from the results 
of diffraction experiments. A sketch of the geometry of such experiments is in- 
dicated in Fig. 2.4. The incident beam consists of monoenergetic electrons, 
X-rays, or neutrons at a selected energy E.  E is chosen so that the wavelength 
X = hc/E of the incident photons (in the X-ray experiment), or the de Broglie 
wavelength X = h / m o f  the incident energetic particles (in the electron or 
neutron experiments) is of the order of cm, comparable to interatomic 
spacings. The measured quantity is the scattering interference function Z(k), 
where the scattering vector k is related to the observed scattering angle 20 by 
k = (4r/X)sin0. The radial distribution function p( r )  is then obtained as the 
real-space transform of Z(k). This seemingly straightforward procedure ac- 
tually involves many subtleties and technical difficulties in both the acquisition 
and the processing of the data. 

The type of scattering experiment schematicized in Fig. 2.4 is often used 
as a diagnostic test for amorphicity. Crystalline solids, in powdered form or 
even in fine-grained polycrystalline form, display a diffraction pattern composed 
of sharp rings. Amorphous solids characteristically reveal rather diffuse bands. 

CRYSTAL GLASS GAS 

Figure 2.3 Schematic sketches of the radial distribution functions for (u) a crystalline 
solid, ( b )  an amorphous solid, and (c) a gas. These distributions schematically correspond 
to the atomic arrangements sketched in Fig. 1.6. 

Structural disorder 
Short-range order

• Can be derived via statistical mechanics 
• Related to the structure factor (the quantity experiments deal with - unless they actually 

manage to count the particles…) via Fourier transform 
• The integral of the g(r) gives the coordination number 
• Ill defined for non-homogeneous system - there are workaround, though…

Short range order (radial distribution function) 
+ 

Topology (Voronoi tessellation)
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Fingerprint of your disordered system

What about crystalline order within a 
disordered network?



Electronic structure 
Goodbye Bloch

Disordered systems Bloch theorem? Forget about it!

Disordered systems 
• You don’t have a periodic potential anymore 
• No more plane waves extending throughout the whole system 
• Band diagrams are (almost) no more
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| (r)i = E| (r)i, VCr(r) = VCr(r+RLattice)

Extended states still exists -possibly-, 
but you cannot label them by quantised 

wave vector values as in crystals

In addition to extended states: 
Localized electronic states
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type transition in crystals, but instead to electron states which are localized. The 
meaning of a localized state is indicated by Fig. 5.10b. The wave function is 
concentrated near a center composed of just a few atoms, and has negligible 
amplitude elsewhere in the solid. Away from the small region that contains es- 
sentially all of its integrated probability j I$[ 2dr, the amplitude spatially decays 
away exponentially with distance. This behavior is schematically shown by the 
dashed-line wave-function envelope in Fig. 5.106, which falls off as e - u R  at 
large distances R from the localization center. The quantity a, an important 
parameter for a given localized state, is known as the inverse localization length, for 
dear physical reasons. 

In crystalline solids, localized states are, of course, often introduced by 
chemical impurities. A familiar example is the case of donor impurities in semi- 
conductor crystals such as phosphorus atoms in crystalline silicon, in which 
hydrogenlike bound states are associated with the impurity atoms at discrete 
energies within the host crystal's energy gap. These states are extrinsic to the 
host solid (the perfect crystal, without chemical impurities or structural defects), 
all of whose intrinsic states are extended Bloch functions. By contrast, we shall see 
that disorder-induced localized states are intrinsic to amorphous solids, and that 
their energy levels form a continuous spectrum rather than a discrete line spectrum as 
in extrinsic semiconductor crystals. 

Figure 5.10 The distinction between extended and localized electron states. A Bloch- 
type extended-state wave function is illustrated in a; a localized-state wave function is il- 
lustrated in b. 

Bloch-like, extended state

Localized state

Basically the whole of |𝛹|2 is concentrated  
in a small region of the system  

(can be a bunch of atoms)

Decays exponentially with distance

Localized states in crystals?



Electronic structure 
The Anderson framework

Localized states In  crystals: extrinsic states 
In amorphous solids or liquids: intrinsic states

Continuous 
spectrum
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kinetic-energy considerations with decreasing bandwidth at low densities, in 
the Anderson case of Fig. 5.13 it occurs via the superposition of a disorder-induced 
potential energy ofsufficient strength. (In fact, as will be discussed shortly, there is an 
effective low-density aspect of Anderson localization which recovers a resem- 
blance to the Mott transition.) 

In Fig. 5.13b, the potential wells representing the atomic sites are no 
longer all the same. Instead, the well depths vary from site in a random way. 
Such a disordered potential is present in an amorphous solid. Because of the 
topological disorder characteristic of such a solid, all sites are different in a 
glass. Instead of a single well depth (and bound-state level) as in the crystalline 
case of Fig. 5.13a, there is a distribution of well depths (and corresponding lev- 
els) in the amorphous case schematicized in Fig. 5.136. The width of this distri- 
bution, which specifies the energy range of the disorder-induced spatial fluctu- 
ations of the potential energy seen by an electron at the atomic sites, is denoted 
by W. 

The competition between kinetic-energy and potential-energy influences 
on the electron states now resides in the ratio WIB. W, the magnitude of the 
random potential, and B, the (crystal) bandwidth in the absence of disorder, 
are the relevant characteristic energies. The essential point was mathematically 
demonstrated in his famous paper entitled “Absence of Diffusion in Certain 
Random Lattices” (Anderson, 1958). Anderson showed that when the dimen- 
sionless disorderparameter WIB is sufficiently large, all of the states in the valence 
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The Anderson localisation ➙ delocalisation transition

Let us start from a sort of tight-binding picture: 
The band structure is obtained as a superposition of localised states, one for each atom 

In a crystal, at every atom correspond a single potential well  
All the wells have the same depth - all sites are equivalent

B is the bandwidth of the crystalline states - in the absence of disorder



Electronic structure 
The Anderson Hamiltonian
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In e.g. an amorphous solid the well depths vary from site to site in a random way  
The sites are not equivalent anymore

W is the width of the distribution the well depths 
Quantifies the energy range of the disorder-induced spatial fluctuations of the potential energy

Now, it’s all about W/B
LargeSmall

All the states in the valence 
band are localised 

Not impossibly disordered 
Extended states persist

The Anderson Hamiltonian:

Randomly chosen from an 
energy distribution of width W

Hopping integral: 
Measures the coupling between 

different sites
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Figure 5.14 Schematic density-of-states diagram for a crystalline and an amor- 
phous semiconductor, in the vicinity of the highest occupied and lowest empty states. 
n(E)dE is the number of electron states, per unit volume, with energies in the interval 
from E to E + dE. With respect to many electrical properties, the mobility edges in the 
amorphous solid play a role analogous to that played by the band edges in the crystal. 

difference between the centers of gravity of the two bands) is determined by the 
bonding-antibonding splitting of the states associated with the covalent bonds 
connecting nearest neighbors of the fourfold-coordinated network. 

One final aspect of Fig. 5.14 requires comment. In the crystalline density 
of states of the upper diagram, there is an energy gap (EG = E, - ED) between 
the top of the valence band (ED) and the bottom of the conduction band (EJ.  
This energy gap (for a perfect crystal) is completely clear of states; it corre- 
sponds to a forbidden energy zone such as the one which separates the bands in 
Fig. 5.96. In principle, these energies can be filled in for an amorphous solid, 
since the sharp band edges of the crystal (which are simply special cases of the 
sharp structure discussed above) need not persist in the presence of disorder. In 
the parlance, the gap of the crystal, in which n ( E )  = 0, is replaced in the glass by 
a “pseudogap” in which n ( E )  is merely very small. It turns out that, for most 

• Even in disordered system there is a valence band - and possibly an energy gap (some glasses are 
transparent, after all…) 

• Even if the degree of disorder is not that large, states in the tails of the band are localised

Pseudogap 
Possibly too large for a (visible light) photon…

Defects -or, particularly localised states

DFT can get these! 
(Large models, no periodicity, ensemble averages…)

Electronic structure 
The power of DFT



Dynamical properties 
Still equilibrium properties!

Think about a metallic liquid.  
In addition to structural properties (topology, short range order…),  

one is usually interested in dynamical properties as well

An example: the diffusion coefficient 
A single number that tells you a lot about your system  

(it’s not about mobility alone, the diffusion coefficient is an essential ingredient in many situations…)

tnt0 t1

The diffusion coefficient is a transport coefficient. And it’s not the only one out there: 
• Diffusion (in response to a concentration gradient) 
• Viscosity (in response to external stress) 
• Thermal conductivity (in response to a temperature gradient) 
• Electrical conductivity (in response to an external electric field)

All of these quantities refer to equilibrium properties of the system,  
which however can be calculated by looking at the dynamics of the system in time 

Or, by actually introducing the perturbation by hand ➙ non equilibrium MD



Dynamical properties 
Green-Kubo relations

All these transport coefficients can be obtained within the same formalism:  
the Green-Kubo relations

For instance, for the diffusion coefficient:

Transport coefficients are related to the time integral of an autocorrelation function

� /
Z 1

0
hp(t†) · p(t⇤)idt

D =

Z 1

0
hv(0) · v(t)idt Ensemble average over all the 

particles and all the time windows  

For each particle i and for each time origin t* 
(In principle. In reality, some tricks apply)

t0 t1 t… tn
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Dynamical properties 
Green-Kubo relations

They contain an awful lot of information about the 
dynamics of your system  

(just from the density and the velocities: mobility, 
structural relaxation, dynamical heterogeneities…)

Autocorrelation functions are equilibrium properties of the system

They measure the correlation of some property (for example the velocity) at time t✼ and t†, 
along the whole equilibrium trajectory

The perturbation you apply to the system is small enough so that you can leave out second order terms

• The ergodic hypothesis needs to hold (you truncate the integral at a certain time) 
• All of this work exclusively within linear response theory 



Dynamical properties 
Linear response theory

It’s our old friend the Liouville equation again!

Recall the equilibrium case:

@

@t

f(x, t) = �ẋ ·rf(x, t)

@

@t

f(x, t) = 0

And the Liouville equation becomes:

ẋ ·rf(x, t) = 0

If you don’t specify a particular ensemble,  
any function of the Hamiltonian is a solution of the equilibrium Liouville equation

f(x) / F(H(x))

P = hp(x)i = 1

Z
Z

p(x)F(H(x)) dx



Dynamical properties 
Linear response theory

This time, we introduce a generic perturbation  
(can be a concentration gradient, a temperature gradient, an electric field…)

The ensemble distribution function will be:

f(x, t) = f0(H(x)) +�f(x, t) Unperturbed ensemble distribution 
function - it satisfies the equilibrium 

Liouville equation

ẋ ·rf0(H(x)) = 0

And similarly the Liouville operator becomes:

ẋ ·r ) (ẋ0 +�ẋ(t))r

✓
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+ ẋ0r
◆
�f(x, t) = ��ẋ(t)rf0(H(x))

Leave out the second order term…

This is the “linearized” non-equilibrium Liouville equation, which ultimately leads to the Green-Kubo formalism 
(Other derivations exist…)   

The key point:

Within linear response theory, a non-equilibrium average can be generated 
entirely within an equilibrium calculation

Ab initio MD is (slowly) getting there!

Of course, a similar quantum case exists…




